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Full	PDF	PackageDownload	Full	PDF	PackageThis	PaperA	short	summary	of	this	paper37	Full	PDFs	related	to	this	paperDownloadPDF	Pack	Analysis	of	the	relationships	between	different	physical	quantities	In	engineering	and	science,	dimensional	analysis	is	the	analysis	of	the	relationships	between	different	physical	quantities	by	identifying	their
base	quantities	(such	as	length,	mass,	time,	and	electric	current)	and	units	of	measure	(such	as	miles	vs.	kilometres,	or	pounds	vs.	kilograms)	and	tracking	these	dimensions	as	calculations	or	comparisons	are	performed.	The	conversion	of	units	from	one	dimensional	unit	to	another	is	often	easier	within	the	metric	or	SI	system	than	in	others,	due	to
the	regular	10-base	in	all	units.	Dimensional	analysis,	or	more	specifically	the	factor-label	method,	also	known	as	the	unit-factor	method,	is	a	widely	used	technique	for	such	conversions	using	the	rules	of	algebra.[1][2][3]	Commensurable	physical	quantities	are	of	the	same	kind	and	have	the	same	dimension,	and	can	be	directly	compared	to	each
other,	even	if	they	are	originally	expressed	in	differing	units	of	measure,	e.g.	yards	and	metres,	pounds	(mass)	and	kilograms,	seconds	and	years.	Incommensurable	physical	quantities	are	of	different	kinds	and	have	different	dimensions,	and	can	not	be	directly	compared	to	each	other,	no	matter	what	units	they	are	originally	expressed	in,	e.g.	meters
and	kilograms,	seconds	and	kilograms,	meters	and	seconds.	For	example,	asking	whether	a	kilogram	is	larger	than	an	hour	is	meaningless.	Any	physically	meaningful	equation,	or	inequality,	must	have	the	same	dimensions	on	its	left	and	right	sides,	a	property	known	as	dimensional	homogeneity.	Checking	for	dimensional	homogeneity	is	a	common
application	of	dimensional	analysis,	serving	as	a	plausibility	check	on	derived	equations	and	computations.	It	also	serves	as	a	guide	and	constraint	in	deriving	equations	that	may	describe	a	physical	system	in	the	absence	of	a	more	rigorous	derivation.	The	concept	of	physical	dimension,	and	of	dimensional	analysis,	was	introduced	by	Joseph	Fourier	in
1822.[4]	Concrete	numbers	and	base	units	Many	parameters	and	measurements	in	the	physical	sciences	and	engineering	are	expressed	as	a	concrete	number—a	numerical	quantity	and	a	corresponding	dimensional	unit.	Often	a	quantity	is	expressed	in	terms	of	several	other	quantities;	for	example,	speed	is	a	combination	of	length	and	time,	e.g.
60	kilometres	per	hour	or	1.4	kilometres	per	second.	Compound	relations	with	"per"	are	expressed	with	division,	e.g.	60	km/1	h.	Other	relations	can	involve	multiplication	(often	shown	with	a	centered	dot	or	juxtaposition),	powers	(like	m2	for	square	metres),	or	combinations	thereof.	A	set	of	base	units	for	a	system	of	measurement	is	a	conventionally
chosen	set	of	units,	none	of	which	can	be	expressed	as	a	combination	of	the	others	and	in	terms	of	which	all	the	remaining	units	of	the	system	can	be	expressed.[5]	For	example,	units	for	length	and	time	are	normally	chosen	as	base	units.	Units	for	volume,	however,	can	be	factored	into	the	base	units	of	length	(m3),	thus	they	are	considered	derived	or
compound	units.	Sometimes	the	names	of	units	obscure	the	fact	that	they	are	derived	units.	For	example,	a	newton	(N)	is	a	unit	of	force,	which	has	units	of	mass	(kg)	times	units	of	acceleration	(m⋅s−2).	The	newton	is	defined	as	1	N	=	1	kg⋅m⋅s−2.	Percentages,	derivatives	and	integrals	Percentages	are	dimensionless	quantities,	since	they	are	ratios	of
two	quantities	with	the	same	dimensions.	In	other	words,	the	%	sign	can	be	read	as	"hundredths",	since	1%	=	1/100.	Taking	a	derivative	with	respect	to	a	quantity	adds	the	dimension	of	the	variable	one	is	differentiating	with	respect	to,	in	the	denominator.	Thus:	position	(x)	has	the	dimension	L	(length);	derivative	of	position	with	respect	to	time
(dx/dt,	velocity)	has	dimension	T−1L—length	from	position,	time	due	to	the	gradient;	the	second	derivative	(d2x/dt2	=	d(dx/dt)	/	dt,	acceleration)	has	dimension	T−2L.	Likewise,	taking	an	integral	adds	the	dimension	of	the	variable	one	is	integrating	with	respect	to,	but	in	the	numerator.	force	has	the	dimension	T−2LM	(mass	multiplied	by
acceleration);	the	integral	of	force	with	respect	to	the	distance	(s)	the	object	has	travelled	(	∫	F			d	s	{\displaystyle	\textstyle	\int	F\	ds}	,	work)	has	dimension	T−2L2M.	In	economics,	one	distinguishes	between	stocks	and	flows:	a	stock	has	units	of	"units"	(say,	widgets	or	dollars),	while	a	flow	is	a	derivative	of	a	stock,	and	has	units	of	"units/time"	(say,
dollars/year).	In	some	contexts,	dimensional	quantities	are	expressed	as	dimensionless	quantities	or	percentages	by	omitting	some	dimensions.	For	example,	debt-to-GDP	ratios	are	generally	expressed	as	percentages:	total	debt	outstanding	(dimension	of	currency)	divided	by	annual	GDP	(dimension	of	currency)—but	one	may	argue	that,	in	comparing
a	stock	to	a	flow,	annual	GDP	should	have	dimensions	of	currency/time	(dollars/year,	for	instance)	and	thus	debt-to-GDP	should	have	units	of	years,	which	indicates	that	debt-to-GDP	is	the	number	of	years	needed	for	a	constant	GDP	to	pay	the	debt,	if	all	GDP	is	spent	on	the	debt	and	the	debt	is	otherwise	unchanged.	Conversion	factor	Main	article:
Conversion	factor	In	dimensional	analysis,	a	ratio	which	converts	one	unit	of	measure	into	another	without	changing	the	quantity	is	called	a	conversion	factor.	For	example,	kPa	and	bar	are	both	units	of	pressure,	and	100	kPa	=	1	bar.	The	rules	of	algebra	allow	both	sides	of	an	equation	to	be	divided	by	the	same	expression,	so	this	is	equivalent	to	100
kPa	/	1	bar	=	1.	Since	any	quantity	can	be	multiplied	by	1	without	changing	it,	the	expression	"100	kPa	/	1	bar"	can	be	used	to	convert	from	bars	to	kPa	by	multiplying	it	with	the	quantity	to	be	converted,	including	units.	For	example,	5	bar	×	100	kPa	/	1	bar	=	500	kPa	because	5	×	100	/	1	=	500,	and	bar/bar	cancels	out,	so	5	bar	=	500	kPa.
Dimensional	homogeneity	See	also:	Apples	and	oranges	The	most	basic	rule	of	dimensional	analysis	is	that	of	dimensional	homogeneity.[6]	Only	commensurable	quantities	(physical	quantities	having	the	same	dimension)	may	be	compared,	equated,	added,	or	subtracted.	However,	the	dimensions	form	an	abelian	group	under	multiplication,	so:	One
may	take	ratios	of	incommensurable	quantities	(quantities	with	different	dimensions),	and	multiply	or	divide	them.	For	example,	it	makes	no	sense	to	ask	whether	1	hour	is	more,	the	same,	or	less	than	1	kilometre,	as	these	have	different	dimensions,	nor	to	add	1	hour	to	1	kilometre.	However,	it	makes	perfect	sense	to	ask	whether	1	mile	is	more,	the
same,	or	less	than	1	kilometre	being	the	same	dimension	of	physical	quantity	even	though	the	units	are	different.	On	the	other	hand,	if	an	object	travels	100	km	in	2	hours,	one	may	divide	these	and	conclude	that	the	object's	average	speed	was	50	km/h.	The	rule	implies	that	in	a	physically	meaningful	expression	only	quantities	of	the	same	dimension
can	be	added,	subtracted,	or	compared.	For	example,	if	mman,	mrat	and	Lman	denote,	respectively,	the	mass	of	some	man,	the	mass	of	a	rat	and	the	length	of	that	man,	the	dimensionally	homogeneous	expression	mman	+	mrat	is	meaningful,	but	the	heterogeneous	expression	mman	+	Lman	is	meaningless.	However,	mman/L2man	is	fine.	Thus,
dimensional	analysis	may	be	used	as	a	sanity	check	of	physical	equations:	the	two	sides	of	any	equation	must	be	commensurable	or	have	the	same	dimensions.	This	has	the	implication	that	most	mathematical	functions,	particularly	the	transcendental	functions,	must	have	a	dimensionless	quantity,	a	pure	number,	as	the	argument	and	must	return	a
dimensionless	number	as	a	result.	This	is	clear	because	many	transcendental	functions	can	be	expressed	as	an	infinite	power	series	with	dimensionless	coefficients.	f	(	x	)	=	∑	n	=	0	∞	a	n	x	n	=	a	0	+	a	1	x	+	a	2	x	2	+	a	3	x	3	+	⋯	{\displaystyle	f(x)=\sum	_{n=0}^{\infty	}a_{n}x^{n}=a_{0}+a_{1}x+a_{2}x^{2}+a_{3}x^{3}+\cdots	}	All	powers	of	x
must	have	the	same	dimension	for	the	terms	to	be	commensurable.	But	if	x	is	not	dimensionless,	then	the	different	powers	of	x	will	have	different,	incommensurable	dimensions.	However,	power	functions	including	root	functions	may	have	a	dimensional	argument	and	will	return	a	result	having	dimension	that	is	the	same	power	applied	to	the
argument	dimension.	This	is	because	power	functions	and	root	functions	are,	loosely,	just	an	expression	of	multiplication	of	quantities.	Even	when	two	physical	quantities	have	identical	dimensions,	it	may	nevertheless	be	meaningless	to	compare	or	add	them.	For	example,	although	torque	and	energy	share	the	dimension	T−2L2M,	they	are
fundamentally	different	physical	quantities.	To	compare,	add,	or	subtract	quantities	with	the	same	dimensions	but	expressed	in	different	units,	the	standard	procedure	is	first	to	convert	them	all	to	the	same	units.	For	example,	to	compare	32	metres	with	35	yards,	use	1	yard	=	0.9144	m	to	convert	35	yards	to	32.004	m.	A	related	principle	is	that	any
physical	law	that	accurately	describes	the	real	world	must	be	independent	of	the	units	used	to	measure	the	physical	variables.[7]	For	example,	Newton's	laws	of	motion	must	hold	true	whether	distance	is	measured	in	miles	or	kilometres.	This	principle	gives	rise	to	the	form	that	conversion	factors	must	take	between	units	that	measure	the	same
dimension:	multiplication	by	a	simple	constant.	It	also	ensures	equivalence;	for	example,	if	two	buildings	are	the	same	height	in	feet,	then	they	must	be	the	same	height	in	metres.	The	factor-label	method	for	converting	units	The	factor-label	method	is	the	sequential	application	of	conversion	factors	expressed	as	fractions	and	arranged	so	that	any
dimensional	unit	appearing	in	both	the	numerator	and	denominator	of	any	of	the	fractions	can	be	cancelled	out	until	only	the	desired	set	of	dimensional	units	is	obtained.	For	example,	10	miles	per	hour	can	be	converted	to	meters	per	second	by	using	a	sequence	of	conversion	factors	as	shown	below:	10			mile	1			hour	×	1609.344		meter	1			mile	×	1		
hour	3600		second	=	4.4704			meter	second	.	{\displaystyle	{\frac	{10\	{\cancel	{\text{mile}}}}{1\	{\cancel	{\text{hour}}}}}\times	{\frac	{1609.344{\text{	meter}}}{1\	{\cancel	{\text{mile}}}}}\times	{\frac	{1\	{\cancel	{\text{hour}}}}{3600{\text{	second}}}}=4.4704\	{\frac	{\text{meter}}{\text{second}}}.}	Each	conversion	factor	is	chosen
based	on	the	relationship	between	one	of	the	original	units	and	one	of	the	desired	units	(or	some	intermediary	unit),	before	being	re-arranged	to	create	a	factor	that	cancels	out	the	original	unit.	For	example,	as	"mile"	is	the	numerator	in	the	original	fraction	and	1			mile	=	1609.344			meter	{\displaystyle	1\	{\text{mile}}=1609.344\	{\text{meter}}}	,
"mile"	will	need	to	be	the	denominator	in	the	conversion	factor.	Dividing	both	sides	of	the	equation	by	1	mile	yields	1			mile	1			mile	=	1609.344			meter	1			mile	{\displaystyle	{\frac	{1\	{\text{mile}}}{1\	{\text{mile}}}}={\frac	{1609.344\	{\text{meter}}}{1\	{\text{mile}}}}}	,	which	when	simplified	results	in	the	dimensionless	1	=	1609.344			meter
1			mile	{\displaystyle	1={\frac	{1609.344\	{\text{meter}}}{1\	{\text{mile}}}}}	.	Multiplying	any	quantity	(physical	quantity	or	not)	by	the	dimensionless	1	does	not	change	that	quantity.	Once	this	and	the	conversion	factor	for	seconds	per	hour	have	been	multiplied	by	the	original	fraction	to	cancel	out	the	units	mile	and	hour,	10	miles	per	hour
converts	to	4.4704	meters	per	second.	As	a	more	complex	example,	the	concentration	of	nitrogen	oxides	(i.e.,	NO	x	{\displaystyle	\color	{Blue}{\ce	{NO}}_{x}}	)	in	the	flue	gas	from	an	industrial	furnace	can	be	converted	to	a	mass	flow	rate	expressed	in	grams	per	hour	(i.e.,	g/h)	of	NO	x	{\displaystyle	{\ce	{NO}}_{x}}	by	using	the	following
information	as	shown	below:	NOx	concentration	=	10	parts	per	million	by	volume	=	10	ppmv	=	10	volumes/106	volumes	NOx	molar	mass	=	46	kg/kmol	=	46	g/mol	Flow	rate	of	flue	gas	=	20	cubic	meters	per	minute	=	20	m3/min	The	flue	gas	exits	the	furnace	at	0	°C	temperature	and	101.325	kPa	absolute	pressure.	The	molar	volume	of	a	gas	at	0	°C
temperature	and	101.325	kPa	is	22.414	m3/kmol.	1000			g			NO	x	1	kg			NO	x	×	46			kg			NO	x	1			kmol			NO	x	×	1			kmol			NO	x	22.414			m	3			NO	x	×	10			m	3			NO	x	10	6			m	3			gas	×	20			m	3			gas	1			minute	×	60			minute	1			hour	=	24.63			g			NO	x	hour	{\displaystyle	{\frac	{1000\	{\ce	{g\	NO}}_{x}}{1{\cancel	{{\ce	{kg\	NO}}_{x}}}}}\times
{\frac	{46\	{\cancel	{{\ce	{kg\	NO}}_{x}}}}{1\	{\cancel	{{\ce	{kmol\	NO}}_{x}}}}}\times	{\frac	{1\	{\cancel	{{\ce	{kmol\	NO}}_{x}}}}{22.414\	{\cancel	{{\ce	{m}}^{3}\	{\ce	{NO}}_{x}}}}}\times	{\frac	{10\	{\cancel	{{\ce	{m}}^{3}\	{\ce	{NO}}_{x}}}}{10^{6}\	{\cancel	{{\ce	{m}}^{3}\	{\ce	{gas}}}}}}\times	{\frac	{20\	{\cancel	{{\ce
{m}}^{3}\	{\ce	{gas}}}}}{1\	{\cancel	{\ce	{minute}}}}}\times	{\frac	{60\	{\cancel	{\ce	{minute}}}}{1\	{\ce	{hour}}}}=24.63\	{\frac	{{\ce	{g\	NO}}_{x}}{\ce	{hour}}}}	After	canceling	out	any	dimensional	units	that	appear	both	in	the	numerators	and	denominators	of	the	fractions	in	the	above	equation,	the	NOx	concentration	of	10	ppmv
converts	to	mass	flow	rate	of	24.63	grams	per	hour.	Checking	equations	that	involve	dimensions	The	factor-label	method	can	also	be	used	on	any	mathematical	equation	to	check	whether	or	not	the	dimensional	units	on	the	left	hand	side	of	the	equation	are	the	same	as	the	dimensional	units	on	the	right	hand	side	of	the	equation.	Having	the	same
units	on	both	sides	of	an	equation	does	not	ensure	that	the	equation	is	correct,	but	having	different	units	on	the	two	sides	(when	expressed	in	terms	of	base	units)	of	an	equation	implies	that	the	equation	is	wrong.	For	example,	check	the	Universal	Gas	Law	equation	of	PV	=	nRT,	when:	the	pressure	P	is	in	pascals	(Pa)	the	volume	V	is	in	cubic	meters
(m3)	the	amount	of	substance	n	is	in	moles	(mol)	the	universal	gas	law	constant	R	is	8.3145	Pa⋅m3/(mol⋅K)	the	temperature	T	is	in	kelvins	(K)	Pa	⋅	m	3	=	mol	1	×	Pa	⋅	m	3	mol			K	×	K	1	{\displaystyle	{\ce	{Pa.m^3}}={\frac	{\cancel	{{\ce	{mol}}}}{1}}\times	{\frac	{{\ce	{Pa.m^3}}}{{\cancel	{{\ce	{mol}}}}\	{\cancel	{{\ce	{K}}}}}}\times	{\frac
{\cancel	{{\ce	{K}}}}{1}}}	As	can	be	seen,	when	the	dimensional	units	appearing	in	the	numerator	and	denominator	of	the	equation's	right	hand	side	are	cancelled	out,	both	sides	of	the	equation	have	the	same	dimensional	units.	Dimensional	analysis	can	be	used	as	a	tool	to	construct	equations	that	relate	non-associated	physico-chemical
properties.	The	equations	may	reveal	hitherto	unknown	or	overlooked	properties	of	matter,	in	the	form	of	left-over	dimensions	–	dimensional	adjusters	–	that	can	then	be	assigned	physical	significance.	It	is	important	to	point	out	that	such	'mathematical	manipulation'	is	neither	without	prior	precedent,	nor	without	considerable	scientific	significance.
Indeed,	the	Planck	constant,	a	fundamental	constant	of	the	universe,	was	'discovered'	as	a	purely	mathematical	abstraction	or	representation	that	built	on	the	Rayleigh–Jeans	law	for	preventing	the	ultraviolet	catastrophe.	It	was	assigned	and	ascended	to	its	quantum	physical	significance	either	in	tandem	or	post	mathematical	dimensional	adjustment
–	not	earlier.	Limitations	The	factor-label	method	can	convert	only	unit	quantities	for	which	the	units	are	in	a	linear	relationship	intersecting	at	0.	(Ratio	scale	in	Stevens's	typology)	Most	units	fit	this	paradigm.	An	example	for	which	it	cannot	be	used	is	the	conversion	between	degrees	Celsius	and	kelvins	(or	degrees	Fahrenheit).	Between	degrees
Celsius	and	kelvins,	there	is	a	constant	difference	rather	than	a	constant	ratio,	while	between	degrees	Celsius	and	degrees	Fahrenheit	there	is	neither	a	constant	difference	nor	a	constant	ratio.	There	is,	however,	an	affine	transform	(	x	↦	a	x	+	b	{\displaystyle	x\mapsto	ax+b}	,	rather	than	a	linear	transform	x	↦	a	x	{\displaystyle	x\mapsto	ax}	)
between	them.	For	example,	the	freezing	point	of	water	is	0	°C	and	32	°F,	and	a	5	°C	change	is	the	same	as	a	9	°F	change.	Thus,	to	convert	from	units	of	Fahrenheit	to	units	of	Celsius,	one	subtracts	32	°F	(the	offset	from	the	point	of	reference),	divides	by	9	°F	and	multiplies	by	5	°C	(scales	by	the	ratio	of	units),	and	adds	0	°C	(the	offset	from	the	point
of	reference).	Reversing	this	yields	the	formula	for	obtaining	a	quantity	in	units	of	Celsius	from	units	of	Fahrenheit;	one	could	have	started	with	the	equivalence	between	100	°C	and	212	°F,	though	this	would	yield	the	same	formula	at	the	end.	Hence,	to	convert	the	numerical	quantity	value	of	a	temperature	T[F]	in	degrees	Fahrenheit	to	a	numerical
quantity	value	T[C]	in	degrees	Celsius,	this	formula	may	be	used:	T[C]	=	(T[F]	−	32)	×	5/9.	To	convert	T[C]	in	degrees	Celsius	to	T[F]	in	degrees	Fahrenheit,	this	formula	may	be	used:	T[F]	=	(T[C]	×	9/5)	+	32.	Applications	Dimensional	analysis	is	most	often	used	in	physics	and	chemistry	–	and	in	the	mathematics	thereof	–	but	finds	some	applications
outside	of	those	fields	as	well.	Mathematics	A	simple	application	of	dimensional	analysis	to	mathematics	is	in	computing	the	form	of	the	volume	of	an	n-ball	(the	solid	ball	in	n	dimensions),	or	the	area	of	its	surface,	the	n-sphere:	being	an	n-dimensional	figure,	the	volume	scales	as	x	n	,	{\displaystyle	x^{n},}	while	the	surface	area,	being	(	n	−	1	)
{\displaystyle	(n-1)}	-dimensional,	scales	as	x	n	−	1	.	{\displaystyle	x^{n-1}.}	Thus	the	volume	of	the	n-ball	in	terms	of	the	radius	is	C	n	r	n	,	{\displaystyle	C_{n}r^{n},}	for	some	constant	C	n	.	{\displaystyle	C_{n}.}	Determining	the	constant	takes	more	involved	mathematics,	but	the	form	can	be	deduced	and	checked	by	dimensional	analysis	alone.
Finance,	economics,	and	accounting	In	finance,	economics,	and	accounting,	dimensional	analysis	is	most	commonly	referred	to	in	terms	of	the	distinction	between	stocks	and	flows.	More	generally,	dimensional	analysis	is	used	in	interpreting	various	financial	ratios,	economics	ratios,	and	accounting	ratios.	For	example,	the	P/E	ratio	has	dimensions	of
time	(units	of	years),	and	can	be	interpreted	as	"years	of	earnings	to	earn	the	price	paid".	In	economics,	debt-to-GDP	ratio	also	has	units	of	years	(debt	has	units	of	currency,	GDP	has	units	of	currency/year).	Velocity	of	money	has	units	of	1/years	(GDP/money	supply	has	units	of	currency/year	over	currency):	how	often	a	unit	of	currency	circulates	per
year.	Annual	continuously	compounded	interest	rates	and	simple	interest	rates	are	often	expressed	as	a	percentage	(adimensional	quantity)	while	time	is	expressed	as	an	adimensional	quantity	consisting	of	the	number	of	years.	However,	if	the	time	includes	year	as	the	unit	of	measure,	the	dimension	of	the	rate	is	1/year.	Of	course,	there	is	nothing
special	(apart	from	the	usual	convention)	about	using	year	as	a	unit	of	time:	any	other	time	unit	can	be	used.	Furthermore,	if	rate	and	time	include	their	units	of	measure	the	use	of	different	units	for	each	is	not	problematic.	In	contrast,	rate	and	time	need	to	refer	to	a	common	period	if	they	are	adimensional.	(Note	that	effective	interest	rates	can	only
be	defined	as	adimensional	quantities.)	In	financial	analysis,	bond	duration	can	be	defined	as	(dV/dr)/V,	where	V	is	the	value	of	a	bond	(or	portfolio),	r	is	the	continuously	compounded	interest	rate	and	dV/dr	is	a	derivative.	From	the	previous	point,	the	dimension	of	r	is	1/time.	Therefore,	the	dimension	of	duration	is	time	(usually	expressed	in	years)
because	dr	is	in	the	"denominator"	of	the	derivative.	Fluid	mechanics	In	fluid	mechanics,	dimensional	analysis	is	performed	to	obtain	dimensionless	pi	terms	or	groups.	According	to	the	principles	of	dimensional	analysis,	any	prototype	can	be	described	by	a	series	of	these	terms	or	groups	that	describe	the	behaviour	of	the	system.	Using	suitable	pi
terms	or	groups,	it	is	possible	to	develop	a	similar	set	of	pi	terms	for	a	model	that	has	the	same	dimensional	relationships.[8]	In	other	words,	pi	terms	provide	a	shortcut	to	developing	a	model	representing	a	certain	prototype.	Common	dimensionless	groups	in	fluid	mechanics	include:	Reynolds	number	(Re),	generally	important	in	all	types	of	fluid
problems:	R	e	=	ρ	u	d	μ	.	{\displaystyle	\mathrm	{Re}	={\frac	{\rho	\,ud}{\mu	}}.}	Froude	number	(Fr),	modeling	flow	with	a	free	surface:	F	r	=	u	g	L	.	{\displaystyle	\mathrm	{Fr}	={\frac	{u}{\sqrt	{g\,L}}}.}	Euler	number	(Eu),	used	in	problems	in	which	pressure	is	of	interest:	E	u	=	Δ	p	ρ	u	2	.	{\displaystyle	\mathrm	{Eu}	={\frac	{\Delta	p}{\rho
u^{2}}}.}	Mach	number	(Ma),	important	in	high	speed	flows	where	the	velocity	approaches	or	exceeds	the	local	speed	of	sound:	M	a	=	u	c	,	{\displaystyle	\mathrm	{Ma}	={\frac	{u}{c}},}	where	c	is	the	local	speed	of	sound.	History	The	origins	of	dimensional	analysis	have	been	disputed	by	historians.[9][10]	The	first	written	application	of
dimensional	analysis	has	been	credited	to	an	article	of	François	Daviet	at	the	Turin	Academy	of	Science.	Daviet	had	the	master	Lagrange	as	teacher.	His	fundamental	works	are	contained	in	acta	of	the	Academy	dated	1799.[10]	This	led	to	the	conclusion	that	meaningful	laws	must	be	homogeneous	equations	in	their	various	units	of	measurement,	a
result	which	was	eventually	later	formalized	in	the	Buckingham	π	theorem.	Simeon	Poisson	also	treated	the	same	problem	of	the	parallelogram	law	by	Daviet,	in	his	treatise	of	1811	and	1833	(vol	I,	p.	39).[11]	In	the	second	edition	of	1833,	Poisson	explicitly	introduces	the	term	dimension	instead	of	the	Daviet	homogeneity.	In	1822,	the	important
Napoleonic	scientist	Joseph	Fourier	made	the	first	credited	important	contributions[12]	based	on	the	idea	that	physical	laws	like	F	=	ma	should	be	independent	of	the	units	employed	to	measure	the	physical	variables.	James	Clerk	Maxwell	played	a	major	role	in	establishing	modern	use	of	dimensional	analysis	by	distinguishing	mass,	length,	and	time
as	fundamental	units,	while	referring	to	other	units	as	derived.[13]	Although	Maxwell	defined	length,	time	and	mass	to	be	"the	three	fundamental	units",	he	also	noted	that	gravitational	mass	can	be	derived	from	length	and	time	by	assuming	a	form	of	Newton's	law	of	universal	gravitation	in	which	the	gravitational	constant	G	is	taken	as	unity,	thereby
defining	M	=	T−2L3.[14]	By	assuming	a	form	of	Coulomb's	law	in	which	Coulomb's	constant	ke	is	taken	as	unity,	Maxwell	then	determined	that	the	dimensions	of	an	electrostatic	unit	of	charge	were	Q	=	T−1L3/2M1/2,[15]	which,	after	substituting	his	M	=	T−2L3	equation	for	mass,	results	in	charge	having	the	same	dimensions	as	mass,	viz.	Q	=
T−2L3.	Dimensional	analysis	is	also	used	to	derive	relationships	between	the	physical	quantities	that	are	involved	in	a	particular	phenomenon	that	one	wishes	to	understand	and	characterize.	It	was	used	for	the	first	time	(Pesic	2005)	in	this	way	in	1872	by	Lord	Rayleigh,	who	was	trying	to	understand	why	the	sky	is	blue.	Rayleigh	first	published	the
technique	in	his	1877	book	The	Theory	of	Sound.[16]	The	original	meaning	of	the	word	dimension,	in	Fourier's	Theorie	de	la	Chaleur,	was	the	numerical	value	of	the	exponents	of	the	base	units.	For	example,	acceleration	was	considered	to	have	the	dimension	1	with	respect	to	the	unit	of	length,	and	the	dimension	−2	with	respect	to	the	unit	of	time.
[17]	This	was	slightly	changed	by	Maxwell,	who	said	the	dimensions	of	acceleration	are	T−2L,	instead	of	just	the	exponents.[18]	Mathematical	formulation	"Dimension	(physics)"	redirects	here.	For	physical	dimensions,	see	Size.	The	Buckingham	π	theorem	describes	how	every	physically	meaningful	equation	involving	n	variables	can	be	equivalently
rewritten	as	an	equation	of	n	−	m	dimensionless	parameters,	where	m	is	the	rank	of	the	dimensional	matrix.	Furthermore,	and	most	importantly,	it	provides	a	method	for	computing	these	dimensionless	parameters	from	the	given	variables.	A	dimensional	equation	can	have	the	dimensions	reduced	or	eliminated	through	nondimensionalization,	which
begins	with	dimensional	analysis,	and	involves	scaling	quantities	by	characteristic	units	of	a	system	or	natural	units	of	nature.	This	gives	insight	into	the	fundamental	properties	of	the	system,	as	illustrated	in	the	examples	below.	Definition	The	dimension	of	a	physical	quantity	can	be	expressed	as	a	product	of	the	basic	physical	dimensions	such	as
length,	mass	and	time,	each	raised	to	a	rational	power.	The	dimension	of	a	physical	quantity	is	more	fundamental	than	some	scale	or	unit	used	to	express	the	amount	of	that	physical	quantity.[19]	For	example,	mass	is	a	dimension,	while	the	kilogram	is	a	particular	scale	unit	chosen	to	express	a	quantity	of	mass.	Except	for	natural	units,	the	choice	of
scale	is	cultural	and	arbitrary.	There	are	many	possible	choices	of	basic	physical	dimensions.	The	SI	standard	recommends	the	usage	of	the	following	dimensions	and	corresponding	symbols:	time	(T),	length	(L),	mass	(M),	electric	current	(I),	absolute	temperature	(Θ),	amount	of	substance	(N)	and	luminous	intensity	(J).	The	symbols	are	by	convention
usually	written	in	roman	sans	serif	typeface.[20]	Mathematically,	the	dimension	of	the	quantity	Q	is	given	by	dim	⁡	Q	=	T	a	L	b	M	c	I	d	Θ	e	N	f	J	g	{\displaystyle	\operatorname	{dim}	Q={\mathsf	{T}}^{a}{\mathsf	{L}}^{b}{\mathsf	{M}}^{c}{\mathsf	{I}}^{d}{\mathsf	{\Theta	}}^{e}{\mathsf	{N}}^{f}{\mathsf	{J}}^{g}}	where	a,	b,	c,	d,	e,	f,	g
are	the	dimensional	exponents.	Other	physical	quantities	could	be	defined	as	the	base	quantities,	as	long	as	they	form	a	linearly	independent	basis	–	for	instance,	one	could	replace	the	dimension	(I)	of	electric	current	of	the	SI	basis	with	a	dimension	(Q)	of	electric	charge,	since	Q	=	TI.	As	examples,	the	dimension	of	the	physical	quantity	speed	v	is	dim
⁡	v	=	length	time	=	L	T	=	T	−	1	L	{\displaystyle	\operatorname	{dim}	v={\frac	{\text{length}}{\text{time}}}={\frac	{\mathsf	{L}}{\mathsf	{T}}}={\mathsf	{T}}^{-1}{\mathsf	{L}}}	and	the	dimension	of	the	physical	quantity	force	F	is	dim	⁡	F	=	mass	×	acceleration	=	mass	×	length	time	2	=	L	M	T	2	=	T	−	2	L	M	{\displaystyle	\operatorname
{dim}	F={\text{mass}}\times	{\text{acceleration}}={\text{mass}}\times	{\frac	{\text{length}}{{\text{time}}^{2}}}={\frac	{{\mathsf	{L}}{\mathsf	{M}}}{{\mathsf	{T}}^{2}}}={\mathsf	{T}}^{-2}{\mathsf	{L}}{\mathsf	{M}}}	The	unit	chosen	to	express	a	physical	quantity	and	its	dimension	are	related,	but	not	identical	concepts.	The	units
of	a	physical	quantity	are	defined	by	convention	and	related	to	some	standard;	e.g.,	length	may	have	units	of	metres,	feet,	inches,	miles	or	micrometres;	but	any	length	always	has	a	dimension	of	L,	no	matter	what	units	of	length	are	chosen	to	express	it.	Two	different	units	of	the	same	physical	quantity	have	conversion	factors	that	relate	them.	For
example,	1	in	=	2.54	cm;	in	this	case	2.54	cm/in	is	the	conversion	factor,	which	is	itself	dimensionless.	Therefore,	multiplying	by	that	conversion	factor	does	not	change	the	dimensions	of	a	physical	quantity.	There	are	also	physicists	who	have	cast	doubt	on	the	very	existence	of	incompatible	fundamental	dimensions	of	physical	quantity,[21]	although
this	does	not	invalidate	the	usefulness	of	dimensional	analysis.	Mathematical	properties	Main	article:	Buckingham	π	theorem	The	dimensions	that	can	be	formed	from	a	given	collection	of	basic	physical	dimensions,	such	as	T,	L,	and	M,	form	an	abelian	group:	The	identity	is	written	as	1;[citation	needed]	L0	=	1,	and	the	inverse	of	L	is	1/L	or	L−1.	L
raised	to	any	rational	power	p	is	a	member	of	the	group,	having	an	inverse	of	L−p	or	1/Lp.	The	operation	of	the	group	is	multiplication,	having	the	usual	rules	for	handling	exponents	(Ln	×	Lm	=	Ln+m).	This	group	can	be	described	as	a	vector	space	over	the	rational	numbers,	with	the	dimensional	symbol	TiLjMk	corresponding	to	the	vector	(i,	j,	k).
When	physical	measured	quantities	(be	they	like-dimensioned	or	unlike-dimensioned)	are	multiplied	or	divided	by	one	other,	their	dimensional	units	are	likewise	multiplied	or	divided;	this	corresponds	to	addition	or	subtraction	in	the	vector	space.	When	measurable	quantities	are	raised	to	a	rational	power,	the	same	is	done	to	the	dimensional	symbols
attached	to	those	quantities;	this	corresponds	to	scalar	multiplication	in	the	vector	space.	A	basis	for	such	a	vector	space	of	dimensional	symbols	is	called	a	set	of	base	quantities,	and	all	other	vectors	are	called	derived	units.	As	in	any	vector	space,	one	may	choose	different	bases,	which	yields	different	systems	of	units	(e.g.,	choosing	whether	the	unit
for	charge	is	derived	from	the	unit	for	current,	or	vice	versa).	The	group	identity,	the	dimension	of	dimensionless	quantities,	corresponds	to	the	origin	in	this	vector	space.	The	set	of	units	of	the	physical	quantities	involved	in	a	problem	correspond	to	a	set	of	vectors	(or	a	matrix).	The	nullity	describes	some	number	(e.g.,	m)	of	ways	in	which	these
vectors	can	be	combined	to	produce	a	zero	vector.	These	correspond	to	producing	(from	the	measurements)	a	number	of	dimensionless	quantities,	{π1,	...,	πm}.	(In	fact	these	ways	completely	span	the	null	subspace	of	another	different	space,	of	powers	of	the	measurements.)	Every	possible	way	of	multiplying	(and	exponentiating)	together	the
measured	quantities	to	produce	something	with	the	same	units	as	some	derived	quantity	X	can	be	expressed	in	the	general	form	X	=	∏	i	=	1	m	(	π	i	)	k	i	.	{\displaystyle	X=\prod	_{i=1}^{m}(\pi	_{i})^{k_{i}}\,.}	Consequently,	every	possible	commensurate	equation	for	the	physics	of	the	system	can	be	rewritten	in	the	form	f	(	π	1	,	π	2	,	.	.	.	,	π	m	)	=	0
.	{\displaystyle	f(\pi	_{1},\pi	_{2},...,\pi	_{m})=0\,.}	Knowing	this	restriction	can	be	a	powerful	tool	for	obtaining	new	insight	into	the	system.	Mechanics	The	dimension	of	physical	quantities	of	interest	in	mechanics	can	be	expressed	in	terms	of	base	dimensions	T,	L,	and	M	–	these	form	a	3-dimensional	vector	space.	This	is	not	the	only	valid	choice	of
base	dimensions,	but	it	is	the	one	most	commonly	used.	For	example,	one	might	choose	force,	length	and	mass	as	the	base	dimensions	(as	some	have	done),	with	associated	dimensions	F,	L,	M;	this	corresponds	to	a	different	basis,	and	one	may	convert	between	these	representations	by	a	change	of	basis.	The	choice	of	the	base	set	of	dimensions	is	thus
a	convention,	with	the	benefit	of	increased	utility	and	familiarity.	The	choice	of	base	dimensions	is	not	entirely	arbitrary,	because	they	must	form	a	basis:	they	must	span	the	space,	and	be	linearly	independent.	For	example,	F,	L,	M	form	a	set	of	fundamental	dimensions	because	they	form	a	basis	that	is	equivalent	to	T,	L,	M:	the	former	can	be
expressed	as	[F	=	LM/T2],	L,	M,	while	the	latter	can	be	expressed	as	[T	=	(LM/F)1/2],	L,	M.	On	the	other	hand,	length,	velocity	and	time	(T,	L,	V)	do	not	form	a	set	of	base	dimensions	for	mechanics,	for	two	reasons:	There	is	no	way	to	obtain	mass	–	or	anything	derived	from	it,	such	as	force	–	without	introducing	another	base	dimension	(thus,	they	do
not	span	the	space).	Velocity,	being	expressible	in	terms	of	length	and	time	(V	=	L/T),	is	redundant	(the	set	is	not	linearly	independent).	Other	fields	of	physics	and	chemistry	Depending	on	the	field	of	physics,	it	may	be	advantageous	to	choose	one	or	another	extended	set	of	dimensional	symbols.	In	electromagnetism,	for	example,	it	may	be	useful	to
use	dimensions	of	T,	L,	M	and	Q,	where	Q	represents	the	dimension	of	electric	charge.	In	thermodynamics,	the	base	set	of	dimensions	is	often	extended	to	include	a	dimension	for	temperature,	Θ.	In	chemistry,	the	amount	of	substance	(the	number	of	molecules	divided	by	the	Avogadro	constant,	≈	6.02×1023	mol−1)	is	also	defined	as	a	base
dimension,	N.	In	the	interaction	of	relativistic	plasma	with	strong	laser	pulses,	a	dimensionless	relativistic	similarity	parameter,	connected	with	the	symmetry	properties	of	the	collisionless	Vlasov	equation,	is	constructed	from	the	plasma-,	electron-	and	critical-densities	in	addition	to	the	electromagnetic	vector	potential.	The	choice	of	the	dimensions
or	even	the	number	of	dimensions	to	be	used	in	different	fields	of	physics	is	to	some	extent	arbitrary,	but	consistency	in	use	and	ease	of	communications	are	common	and	necessary	features.	Polynomials	and	transcendental	functions	Scalar	arguments	to	transcendental	functions	such	as	exponential,	trigonometric	and	logarithmic	functions,	or	to
inhomogeneous	polynomials,	must	be	dimensionless	quantities.	(Note:	this	requirement	is	somewhat	relaxed	in	Siano's	orientational	analysis	described	below,	in	which	the	square	of	certain	dimensioned	quantities	are	dimensionless.)	While	most	mathematical	identities	about	dimensionless	numbers	translate	in	a	straightforward	manner	to
dimensional	quantities,	care	must	be	taken	with	logarithms	of	ratios:	the	identity	log(a/b)	=	log a	−	log b,	where	the	logarithm	is	taken	in	any	base,	holds	for	dimensionless	numbers	a	and	b,	but	it	does	not	hold	if	a	and	b	are	dimensional,	because	in	this	case	the	left-hand	side	is	well-defined	but	the	right-hand	side	is	not.	Similarly,	while	one	can
evaluate	monomials	(xn)	of	dimensional	quantities,	one	cannot	evaluate	polynomials	of	mixed	degree	with	dimensionless	coefficients	on	dimensional	quantities:	for	x2,	the	expression	(3	m)2	=	9	m2	makes	sense	(as	an	area),	while	for	x2	+	x,	the	expression	(3	m)2	+	3	m	=	9	m2	+	3	m	does	not	make	sense.	However,	polynomials	of	mixed	degree	can
make	sense	if	the	coefficients	are	suitably	chosen	physical	quantities	that	are	not	dimensionless.	For	example,	1	2	⋅	(	−	9.8			meter	second	2	)	⋅	t	2	+	(	500			meter	second	)	⋅	t	.	{\displaystyle	{\frac	{1}{2}}\cdot	\left(-9.8\	{\frac	{\text{meter}}{{\text{second}}^{2}}}\right)\cdot	t^{2}+\left(500\	{\frac	{\text{meter}}{\text{second}}}\right)\cdot	t.}
This	is	the	height	to	which	an	object	rises	in	time	t	if	the	acceleration	of	gravity	is	9.8	meters	per	second	per	second	and	the	initial	upward	speed	is	500	meters	per	second.	It	is	not	necessary	for	t	to	be	in	seconds.	For	example,	suppose	t	=	0.01	minutes.	Then	the	first	term	would	be	1	2	⋅	(	−	9.8			meter	second	2	)	⋅	(	0.01		minute	)	2	=	1	2	⋅	−	9.8	⋅	(
0.01	2	)	(	minute	second	)	2	⋅	meter	=	1	2	⋅	−	9.8	⋅	(	0.01	2	)	⋅	60	2	⋅	meter	.	{\displaystyle	{\begin{aligned}&{\frac	{1}{2}}\cdot	\left(-9.8\	{\frac	{\text{meter}}{{\text{second}}^{2}}}\right)\cdot	(0.01{\text{	minute}})^{2}\\[10pt]={}&{\frac	{1}{2}}\cdot	-9.8\cdot	\left(0.01^{2}\right)\left({\frac	{\text{minute}}
{\text{second}}}\right)^{2}\cdot	{\text{meter}}\\[10pt]={}&{\frac	{1}{2}}\cdot	-9.8\cdot	\left(0.01^{2}\right)\cdot	60^{2}\cdot	{\text{meter}}.\end{aligned}}}	Incorporating	units	The	value	of	a	dimensional	physical	quantity	Z	is	written	as	the	product	of	a	unit	[Z]	within	the	dimension	and	a	dimensionless	numerical	factor,	n.[22]	Z	=	n	×	[	Z	]
=	n	[	Z	]	{\displaystyle	Z=n\times	[Z]=n[Z]}	When	like-dimensioned	quantities	are	added	or	subtracted	or	compared,	it	is	convenient	to	express	them	in	consistent	units	so	that	the	numerical	values	of	these	quantities	may	be	directly	added	or	subtracted.	But,	in	concept,	there	is	no	problem	adding	quantities	of	the	same	dimension	expressed	in
different	units.	For	example,	1	meter	added	to	1	foot	is	a	length,	but	one	cannot	derive	that	length	by	simply	adding	1	and	1.	A	conversion	factor,	which	is	a	ratio	of	like-dimensioned	quantities	and	is	equal	to	the	dimensionless	unity,	is	needed:	1			ft	=	0.3048			m			{\displaystyle	1\	{\mbox{ft}}=0.3048\	{\text{m}}\	}	is	identical	to	1	=	0.3048			m	1			ft	.
		{\displaystyle	1={\frac	{0.3048\	{\text{m}}}{1\	{\text{ft}}}}.\	}	The	factor	0.3048			m	ft	{\displaystyle	0.3048\	{\frac	{\text{m}}{\mbox{ft}}}}	is	identical	to	the	dimensionless	1,	so	multiplying	by	this	conversion	factor	changes	nothing.	Then	when	adding	two	quantities	of	like	dimension,	but	expressed	in	different	units,	the	appropriate
conversion	factor,	which	is	essentially	the	dimensionless	1,	is	used	to	convert	the	quantities	to	identical	units	so	that	their	numerical	values	can	be	added	or	subtracted.	Only	in	this	manner	is	it	meaningful	to	speak	of	adding	like-dimensioned	quantities	of	differing	units.	Position	vs	displacement	Main	article:	Affine	space	Some	discussions	of
dimensional	analysis	implicitly	describe	all	quantities	as	mathematical	vectors.	(In	mathematics	scalars	are	considered	a	special	case	of	vectors;[citation	needed]	vectors	can	be	added	to	or	subtracted	from	other	vectors,	and,	inter	alia,	multiplied	or	divided	by	scalars.	If	a	vector	is	used	to	define	a	position,	this	assumes	an	implicit	point	of	reference:
an	origin.	While	this	is	useful	and	often	perfectly	adequate,	allowing	many	important	errors	to	be	caught,	it	can	fail	to	model	certain	aspects	of	physics.	A	more	rigorous	approach	requires	distinguishing	between	position	and	displacement	(or	moment	in	time	versus	duration,	or	absolute	temperature	versus	temperature	change).	Consider	points	on	a
line,	each	with	a	position	with	respect	to	a	given	origin,	and	distances	among	them.	Positions	and	displacements	all	have	units	of	length,	but	their	meaning	is	not	interchangeable:	adding	two	displacements	should	yield	a	new	displacement	(walking	ten	paces	then	twenty	paces	gets	you	thirty	paces	forward),	adding	a	displacement	to	a	position	should
yield	a	new	position	(walking	one	block	down	the	street	from	an	intersection	gets	you	to	the	next	intersection),	subtracting	two	positions	should	yield	a	displacement,	but	one	may	not	add	two	positions.	This	illustrates	the	subtle	distinction	between	affine	quantities	(ones	modeled	by	an	affine	space,	such	as	position)	and	vector	quantities	(ones
modeled	by	a	vector	space,	such	as	displacement).	Vector	quantities	may	be	added	to	each	other,	yielding	a	new	vector	quantity,	and	a	vector	quantity	may	be	added	to	a	suitable	affine	quantity	(a	vector	space	acts	on	an	affine	space),	yielding	a	new	affine	quantity.	Affine	quantities	cannot	be	added,	but	may	be	subtracted,	yielding	relative	quantities
which	are	vectors,	and	these	relative	differences	may	then	be	added	to	each	other	or	to	an	affine	quantity.	Properly	then,	positions	have	dimension	of	affine	length,	while	displacements	have	dimension	of	vector	length.	To	assign	a	number	to	an	affine	unit,	one	must	not	only	choose	a	unit	of	measurement,	but	also	a	point	of	reference,	while	to	assign	a
number	to	a	vector	unit	only	requires	a	unit	of	measurement.	Thus	some	physical	quantities	are	better	modeled	by	vectorial	quantities	while	others	tend	to	require	affine	representation,	and	the	distinction	is	reflected	in	their	dimensional	analysis.	This	distinction	is	particularly	important	in	the	case	of	temperature,	for	which	the	numeric	value	of
absolute	zero	is	not	the	origin	0	in	some	scales.	For	absolute	zero,	−273.15	°C	≘	0	K	=	0	°R	≘	−459.67	°F,	where	the	symbol	≘	means	corresponds	to,	since	although	these	values	on	the	respective	temperature	scales	correspond,	they	represent	distinct	quantities	in	the	same	way	that	the	distances	from	distinct	starting	points	to	the	same	end	point
are	distinct	quantities,	and	cannot	in	general	be	equated.	For	temperature	differences,	1	K	=	1	°C	≠	1	°F	(−17	°C)	=	1	°R.	(Here	°R	refers	to	the	Rankine	scale,	not	the	Réaumur	scale).	Unit	conversion	for	temperature	differences	is	simply	a	matter	of	multiplying	by,	e.g.,	1	°F	/	1	K	(although	the	ratio	is	not	a	constant	value).	But	because	some	of	these
scales	have	origins	that	do	not	correspond	to	absolute	zero,	conversion	from	one	temperature	scale	to	another	requires	accounting	for	that.	As	a	result,	simple	dimensional	analysis	can	lead	to	errors	if	it	is	ambiguous	whether	1	K	means	the	absolute	temperature	equal	to	−272.15	°C,	or	the	temperature	difference	equal	to	1	°C.	Orientation	and	frame
of	reference	Similar	to	the	issue	of	a	point	of	reference	is	the	issue	of	orientation:	a	displacement	in	2	or	3	dimensions	is	not	just	a	length,	but	is	a	length	together	with	a	direction.	(This	issue	does	not	arise	in	1	dimension,	or	rather	is	equivalent	to	the	distinction	between	positive	and	negative.)	Thus,	to	compare	or	combine	two	dimensional	quantities
in	a	multi-dimensional	space,	one	also	needs	an	orientation:	they	need	to	be	compared	to	a	frame	of	reference.	This	leads	to	the	extensions	discussed	below,	namely	Huntley's	directed	dimensions	and	Siano's	orientational	analysis.	Examples	A	simple	example:	period	of	a	harmonic	oscillator	What	is	the	period	of	oscillation	T	of	a	mass	m	attached	to	an
ideal	linear	spring	with	spring	constant	k	suspended	in	gravity	of	strength	g?	That	period	is	the	solution	for	T	of	some	dimensionless	equation	in	the	variables	T,	m,	k,	and	g.	The	four	quantities	have	the	following	dimensions:	T	[T];	m	[M];	k	[M/T2];	and	g	[L/T2].	From	these	we	can	form	only	one	dimensionless	product	of	powers	of	our	chosen	variables,
G	1	{\displaystyle	G_{1}}	=	T	2	k	/	m	{\displaystyle	T^{2}k/m}	[T2	·	M/T2	/	M	=	1],	and	putting	G	1	=	C	{\displaystyle	G_{1}=C}	for	some	dimensionless	constant	C	gives	the	dimensionless	equation	sought.	The	dimensionless	product	of	powers	of	variables	is	sometimes	referred	to	as	a	dimensionless	group	of	variables;	here	the	term	"group"	means
"collection"	rather	than	mathematical	group.	They	are	often	called	dimensionless	numbers	as	well.	Note	that	the	variable	g	does	not	occur	in	the	group.	It	is	easy	to	see	that	it	is	impossible	to	form	a	dimensionless	product	of	powers	that	combines	g	with	k,	m,	and	T,	because	g	is	the	only	quantity	that	involves	the	dimension	L.	This	implies	that	in	this
problem	the	g	is	irrelevant.	Dimensional	analysis	can	sometimes	yield	strong	statements	about	the	irrelevance	of	some	quantities	in	a	problem,	or	the	need	for	additional	parameters.	If	we	have	chosen	enough	variables	to	properly	describe	the	problem,	then	from	this	argument	we	can	conclude	that	the	period	of	the	mass	on	the	spring	is	independent
of	g:	it	is	the	same	on	the	earth	or	the	moon.	The	equation	demonstrating	the	existence	of	a	product	of	powers	for	our	problem	can	be	written	in	an	entirely	equivalent	way:	T	=	κ	m	k	{\displaystyle	T=\kappa	{\sqrt	{\tfrac	{m}{k}}}}	,	for	some	dimensionless	constant	κ	(equal	to	C	{\displaystyle	{\sqrt	{C}}}	from	the	original	dimensionless	equation).
When	faced	with	a	case	where	dimensional	analysis	rejects	a	variable	(g,	here)	that	one	intuitively	expects	to	belong	in	a	physical	description	of	the	situation,	another	possibility	is	that	the	rejected	variable	is	in	fact	relevant,	but	that	some	other	relevant	variable	has	been	omitted,	which	might	combine	with	the	rejected	variable	to	form	a
dimensionless	quantity.	That	is,	however,	not	the	case	here.	When	dimensional	analysis	yields	only	one	dimensionless	group,	as	here,	there	are	no	unknown	functions,	and	the	solution	is	said	to	be	"complete"	–	although	it	still	may	involve	unknown	dimensionless	constants,	such	as	κ.	A	more	complex	example:	energy	of	a	vibrating	wire	Consider	the
case	of	a	vibrating	wire	of	length	ℓ	(L)	vibrating	with	an	amplitude	A	(L).	The	wire	has	a	linear	density	ρ	(M/L)	and	is	under	tension	s	(LM/T2),	and	we	want	to	know	the	energy	E	(L2M/T2)	in	the	wire.	Let	π1	and	π2	be	two	dimensionless	products	of	powers	of	the	variables	chosen,	given	by	π	1	=	E	A	s	π	2	=	ℓ	A	.	{\displaystyle	{\begin{aligned}\pi
_{1}&={\frac	{E}{As}}\\\pi	_{2}&={\frac	{\ell	}{A}}.\end{aligned}}}	The	linear	density	of	the	wire	is	not	involved.	The	two	groups	found	can	be	combined	into	an	equivalent	form	as	an	equation	F	(	E	A	s	,	ℓ	A	)	=	0	,	{\displaystyle	F\left({\frac	{E}{As}},{\frac	{\ell	}{A}}\right)=0,}	where	F	is	some	unknown	function,	or,	equivalently	as	E	=	A	s	f	(	ℓ
A	)	,	{\displaystyle	E=Asf\left({\frac	{\ell	}{A}}\right),}	where	f	is	some	other	unknown	function.	Here	the	unknown	function	implies	that	our	solution	is	now	incomplete,	but	dimensional	analysis	has	given	us	something	that	may	not	have	been	obvious:	the	energy	is	proportional	to	the	first	power	of	the	tension.	Barring	further	analytical	analysis,	we
might	proceed	to	experiments	to	discover	the	form	for	the	unknown	function	f.	But	our	experiments	are	simpler	than	in	the	absence	of	dimensional	analysis.	We'd	perform	none	to	verify	that	the	energy	is	proportional	to	the	tension.	Or	perhaps	we	might	guess	that	the	energy	is	proportional	to	ℓ,	and	so	infer	that	E	=	ℓs.	The	power	of	dimensional
analysis	as	an	aid	to	experiment	and	forming	hypotheses	becomes	evident.	The	power	of	dimensional	analysis	really	becomes	apparent	when	it	is	applied	to	situations,	unlike	those	given	above,	that	are	more	complicated,	the	set	of	variables	involved	are	not	apparent,	and	the	underlying	equations	hopelessly	complex.	Consider,	for	example,	a	small
pebble	sitting	on	the	bed	of	a	river.	If	the	river	flows	fast	enough,	it	will	actually	raise	the	pebble	and	cause	it	to	flow	along	with	the	water.	At	what	critical	velocity	will	this	occur?	Sorting	out	the	guessed	variables	is	not	so	easy	as	before.	But	dimensional	analysis	can	be	a	powerful	aid	in	understanding	problems	like	this,	and	is	usually	the	very	first
tool	to	be	applied	to	complex	problems	where	the	underlying	equations	and	constraints	are	poorly	understood.	In	such	cases,	the	answer	may	depend	on	a	dimensionless	number	such	as	the	Reynolds	number,	which	may	be	interpreted	by	dimensional	analysis.	A	third	example:	demand	versus	capacity	for	a	rotating	disc	Dimensional	analysis	and
numerical	experiments	for	a	rotating	disc	Consider	the	case	of	a	thin,	solid,	parallel-sided	rotating	disc	of	axial	thickness	t	(L)	and	radius	R	(L).	The	disc	has	a	density	ρ	(M/L3),	rotates	at	an	angular	velocity	ω	(T−1)	and	this	leads	to	a	stress	S	(T−2L−1M)	in	the	material.	There	is	a	theoretical	linear	elastic	solution,	given	by	Lame,	to	this	problem	when
the	disc	is	thin	relative	to	its	radius,	the	faces	of	the	disc	are	free	to	move	axially,	and	the	plane	stress	constitutive	relations	can	be	assumed	to	be	valid.	As	the	disc	becomes	thicker	relative	to	the	radius	then	the	plane	stress	solution	breaks	down.	If	the	disc	is	restrained	axially	on	its	free	faces	then	a	state	of	plane	strain	will	occur.	However,	if	this	is
not	the	case	then	the	state	of	stress	may	only	be	determined	though	consideration	of	three-dimensional	elasticity	and	there	is	no	known	theoretical	solution	for	this	case.	An	engineer	might,	therefore,	be	interested	in	establishing	a	relationship	between	the	five	variables.	Dimensional	analysis	for	this	case	leads	to	the	following	(5	−	3	=	2)	non-
dimensional	groups:	demand/capacity	=	ρR2ω2/S	thickness/radius	or	aspect	ratio	=	t/R	Through	the	use	of	numerical	experiments	using,	for	example,	the	finite	element	method,	the	nature	of	the	relationship	between	the	two	non-dimensional	groups	can	be	obtained	as	shown	in	the	figure.	As	this	problem	only	involves	two	non-dimensional	groups,	the
complete	picture	is	provided	in	a	single	plot	and	this	can	be	used	as	a	design/assessment	chart	for	rotating	discs[23]	Extensions	Huntley's	extension:	directed	dimensions	and	quantity	of	matter	Huntley	(Huntley	1967)	has	pointed	out	that	a	dimensional	analysis	can	become	more	powerful	by	discovering	new	independent	dimensions	in	the	quantities
under	consideration,	thus	increasing	the	rank	m	{\displaystyle	m}	of	the	dimensional	matrix.	He	introduced	two	approaches	to	doing	so:	The	magnitudes	of	the	components	of	a	vector	are	to	be	considered	dimensionally	independent.	For	example,	rather	than	an	undifferentiated	length	dimension	L,	we	may	have	Lx	represent	dimension	in	the	x-
direction,	and	so	forth.	This	requirement	stems	ultimately	from	the	requirement	that	each	component	of	a	physically	meaningful	equation	(scalar,	vector,	or	tensor)	must	be	dimensionally	consistent.	Mass	as	a	measure	of	the	quantity	of	matter	is	to	be	considered	dimensionally	independent	from	mass	as	a	measure	of	inertia.	As	an	example	of	the
usefulness	of	the	first	approach,	suppose	we	wish	to	calculate	the	distance	a	cannonball	travels	when	fired	with	a	vertical	velocity	component	V	y	{\displaystyle	V_{\mathrm	{y}	}}	and	a	horizontal	velocity	component	V	x	{\displaystyle	V_{\mathrm	{x}	}}	,	assuming	it	is	fired	on	a	flat	surface.	Assuming	no	use	of	directed	lengths,	the	quantities	of
interest	are	then	V	x	{\displaystyle	V_{\mathrm	{x}	}}	,	V	y	{\displaystyle	V_{\mathrm	{y}	}}	,	both	dimensioned	as	T−1L,	R,	the	distance	travelled,	having	dimension	L,	and	g	the	downward	acceleration	of	gravity,	with	dimension	T−2L.	With	these	four	quantities,	we	may	conclude	that	the	equation	for	the	range	R	may	be	written:	R	∝	V	x	a	V	y	b	g	c
.	{\displaystyle	R\propto	V_{\text{x}}^{a}\,V_{\text{y}}^{b}\,g^{c}.\,}	Or	dimensionally	L	=	(	L	T	)	a	+	b	(	L	T	2	)	c	{\displaystyle	{\mathsf	{L}}=\left({\frac	{\mathsf	{L}}{\mathsf	{T}}}\right)^{a+b}\left({\frac	{\mathsf	{L}}{{\mathsf	{T}}^{2}}}\right)^{c}\,}	from	which	we	may	deduce	that	a	+	b	+	c	=	1	{\displaystyle	a+b+c=1}	and	a	+	b
+	2	c	=	0	{\displaystyle	a+b+2c=0}	,	which	leaves	one	exponent	undetermined.	This	is	to	be	expected	since	we	have	two	fundamental	dimensions	T	and	L,	and	four	parameters,	with	one	equation.	If,	however,	we	use	directed	length	dimensions,	then	V	x	{\displaystyle	V_{\mathrm	{x}	}}	will	be	dimensioned	as	T−1Lx,	V	y	{\displaystyle	V_{\mathrm
{y}	}}	as	T−1Ly,	R	as	Lx	and	g	as	T−2Ly.	The	dimensional	equation	becomes:	L	x	=	(	L	x	T	)	a	(	L	y	T	)	b	(	L	y	T	2	)	c	{\displaystyle	{\mathsf	{L}}_{\mathrm	{x}	}=\left({\frac	{{\mathsf	{L}}_{\mathrm	{x}	}}{\mathsf	{T}}}\right)^{a}\left({\frac	{{\mathsf	{L}}_{\mathrm	{y}	}}{\mathsf	{T}}}\right)^{b}\left({\frac	{{\mathsf	{L}}_{\mathrm	{y}
}}{{\mathsf	{T}}^{2}}}\right)^{c}}	and	we	may	solve	completely	as	a	=	1	{\displaystyle	a=1}	,	b	=	1	{\displaystyle	b=1}	and	c	=	−	1	{\displaystyle	c=-1}	.	The	increase	in	deductive	power	gained	by	the	use	of	directed	length	dimensions	is	apparent.	In	his	second	approach,	Huntley	holds	that	it	is	sometimes	useful	(e.g.,	in	fluid	mechanics	and
thermodynamics)	to	distinguish	between	mass	as	a	measure	of	inertia	(inertial	mass),	and	mass	as	a	measure	of	the	quantity	of	matter.	Quantity	of	matter	is	defined	by	Huntley	as	a	quantity	(a)	proportional	to	inertial	mass,	but	(b)	not	implicating	inertial	properties.	No	further	restrictions	are	added	to	its	definition.	For	example,	consider	the
derivation	of	Poiseuille's	Law.	We	wish	to	find	the	rate	of	mass	flow	of	a	viscous	fluid	through	a	circular	pipe.	Without	drawing	distinctions	between	inertial	and	substantial	mass	we	may	choose	as	the	relevant	variables	m	˙	{\displaystyle	{\dot	{m}}}	the	mass	flow	rate	with	dimension	T−1M	p	x	{\displaystyle	p_{\text{x}}}	the	pressure	gradient	along
the	pipe	with	dimension	T−2L−2M	ρ	the	density	with	dimension	L−3M	η	the	dynamic	fluid	viscosity	with	dimension	T−1L−1M	r	the	radius	of	the	pipe	with	dimension	L	There	are	three	fundamental	variables	so	the	above	five	equations	will	yield	two	dimensionless	variables	which	we	may	take	to	be	π	1	=	m	˙	/	η	r	{\displaystyle	\pi	_{1}={\dot
{m}}/\eta	r}	and	π	2	=	p	x	ρ	r	5	/	m	˙	2	{\displaystyle	\pi	_{2}=p_{\mathrm	{x}	}\rho	r^{5}/{\dot	{m}}^{2}}	and	we	may	express	the	dimensional	equation	as	C	=	π	1	π	2	a	=	(	m	˙	η	r	)	(	p	x	ρ	r	5	m	˙	2	)	a	{\displaystyle	C=\pi	_{1}\pi	_{2}^{a}=\left({\frac	{\dot	{m}}{\eta	r}}\right)\left({\frac	{p_{\mathrm	{x}	}\rho	r^{5}}{{\dot
{m}}^{2}}}\right)^{a}}	where	C	and	a	are	undetermined	constants.	If	we	draw	a	distinction	between	inertial	mass	with	dimension	M	i	{\displaystyle	M_{\text{i}}}	and	quantity	of	matter	with	dimension	M	m	{\displaystyle	M_{\text{m}}}	,	then	mass	flow	rate	and	density	will	use	quantity	of	matter	as	the	mass	parameter,	while	the	pressure
gradient	and	coefficient	of	viscosity	will	use	inertial	mass.	We	now	have	four	fundamental	parameters,	and	one	dimensionless	constant,	so	that	the	dimensional	equation	may	be	written:	C	=	p	x	ρ	r	4	η	m	˙	{\displaystyle	C={\frac	{p_{\mathrm	{x}	}\rho	r^{4}}{\eta	{\dot	{m}}}}}	where	now	only	C	is	an	undetermined	constant	(found	to	be	equal	to	π
/	8	{\displaystyle	\pi	/8}	by	methods	outside	of	dimensional	analysis).	This	equation	may	be	solved	for	the	mass	flow	rate	to	yield	Poiseuille's	law.	Huntley's	recognition	of	quantity	of	matter	as	an	independent	quantity	dimension	is	evidently	successful	in	the	problems	where	it	is	applicable,	but	his	definition	of	quantity	of	matter	is	open	to
interpretation,	as	it	lacks	specificity	beyond	the	two	requirements	(a)	and	(b)	he	postulated	for	it.	For	a	given	substance,	the	SI	dimension	amount	of	substance,	with	unit	mole,	does	satisfy	Huntley's	two	requirements	as	a	measure	of	quantity	of	matter,	and	could	be	used	as	a	quantity	of	matter	in	any	problem	of	dimensional	analysis	where	Huntley's
concept	is	applicable.	Huntley's	concept	of	directed	length	dimensions	however	has	some	serious	limitations:	It	does	not	deal	well	with	vector	equations	involving	the	cross	product,	nor	does	it	handle	well	the	use	of	angles	as	physical	variables.	It	also	is	often	quite	difficult	to	assign	the	L,	Lx,	Ly,	Lz,	symbols	to	the	physical	variables	involved	in	the
problem	of	interest.	He	invokes	a	procedure	that	involves	the	"symmetry"	of	the	physical	problem.	This	is	often	very	difficult	to	apply	reliably:	It	is	unclear	as	to	what	parts	of	the	problem	that	the	notion	of	"symmetry"	is	being	invoked.	Is	it	the	symmetry	of	the	physical	body	that	forces	are	acting	upon,	or	to	the	points,	lines	or	areas	at	which	forces	are
being	applied?	What	if	more	than	one	body	is	involved	with	different	symmetries?	Consider	the	spherical	bubble	attached	to	a	cylindrical	tube,	where	one	wants	the	flow	rate	of	air	as	a	function	of	the	pressure	difference	in	the	two	parts.	What	are	the	Huntley	extended	dimensions	of	the	viscosity	of	the	air	contained	in	the	connected	parts?	What	are
the	extended	dimensions	of	the	pressure	of	the	two	parts?	Are	they	the	same	or	different?	These	difficulties	are	responsible	for	the	limited	application	of	Huntley's	directed	length	dimensions	to	real	problems.	Siano's	extension:	orientational	analysis	Angles	are,	by	convention,	considered	to	be	dimensionless	quantities.	As	an	example,	consider	again
the	projectile	problem	in	which	a	point	mass	is	launched	from	the	origin	(x,	y)	=	(0,	0)	at	a	speed	v	and	angle	θ	above	the	x-axis,	with	the	force	of	gravity	directed	along	the	negative	y-axis.	It	is	desired	to	find	the	range	R,	at	which	point	the	mass	returns	to	the	x-axis.	Conventional	analysis	will	yield	the	dimensionless	variable	π	=	R	g/v2,	but	offers	no
insight	into	the	relationship	between	R	and	θ.	Siano	(1985-I,	1985-II)	has	suggested	that	the	directed	dimensions	of	Huntley	be	replaced	by	using	orientational	symbols	1x	1y	1z	to	denote	vector	directions,	and	an	orientationless	symbol	10.	Thus,	Huntley's	Lx	becomes	L1x	with	L	specifying	the	dimension	of	length,	and	1x	specifying	the	orientation.
Siano	further	shows	that	the	orientational	symbols	have	an	algebra	of	their	own.	Along	with	the	requirement	that	1i−1	=	1i,	the	following	multiplication	table	for	the	orientation	symbols	results:	1	0	{\displaystyle	\mathbf	{1_{0}}	}	1	x	{\displaystyle	\mathbf	{1_{\text{x}}}	}	1	y	{\displaystyle	\mathbf	{1_{\text{y}}}	}	1	z	{\displaystyle	\mathbf
{1_{\text{z}}}	}	1	0	{\displaystyle	\mathbf	{1_{0}}	}	1	0	{\displaystyle	1_{0}}	1	x	{\displaystyle	1_{\text{x}}}	1	y	{\displaystyle	1_{\text{y}}}	1	z	{\displaystyle	1_{\text{z}}}	1	x	{\displaystyle	\mathbf	{1_{\text{x}}}	}	1	x	{\displaystyle	1_{\text{x}}}	1	0	{\displaystyle	1_{0}}	1	z	{\displaystyle	1_{\text{z}}}	1	y	{\displaystyle	1_{\text{y}}}	1	y
{\displaystyle	\mathbf	{1_{\text{y}}}	}	1	y	{\displaystyle	1_{\text{y}}}	1	z	{\displaystyle	1_{\text{z}}}	1	0	{\displaystyle	1_{0}}	1	x	{\displaystyle	1_{\text{x}}}	1	z	{\displaystyle	\mathbf	{1_{\text{z}}}	}	1	z	{\displaystyle	1_{\text{z}}}	1	y	{\displaystyle	1_{\text{y}}}	1	x	{\displaystyle	1_{\text{x}}}	1	0	{\displaystyle	1_{0}}	Note	that	the
orientational	symbols	form	a	group	(the	Klein	four-group	or	"Viergruppe").	In	this	system,	scalars	always	have	the	same	orientation	as	the	identity	element,	independent	of	the	"symmetry	of	the	problem".	Physical	quantities	that	are	vectors	have	the	orientation	expected:	a	force	or	a	velocity	in	the	z-direction	has	the	orientation	of	1z.	For	angles,
consider	an	angle	θ	that	lies	in	the	z-plane.	Form	a	right	triangle	in	the	z-plane	with	θ	being	one	of	the	acute	angles.	The	side	of	the	right	triangle	adjacent	to	the	angle	then	has	an	orientation	1x	and	the	side	opposite	has	an	orientation	1y.	Since	(using	~	to	indicate	orientational	equivalence)	tan(θ)	=	θ	+	...	~	1y/1x	we	conclude	that	an	angle	in	the	xy-
plane	must	have	an	orientation	1y/1x	=	1z,	which	is	not	unreasonable.	Analogous	reasoning	forces	the	conclusion	that	sin(θ)	has	orientation	1z	while	cos(θ)	has	orientation	10.	These	are	different,	so	one	concludes	(correctly),	for	example,	that	there	are	no	solutions	of	physical	equations	that	are	of	the	form	a	cos(θ)	+	b	sin(θ),	where	a	and	b	are	real
scalars.	Note	that	an	expression	such	as	sin	⁡	(	θ	+	π	/	2	)	=	cos	⁡	(	θ	)	{\displaystyle	\sin(\theta	+\pi	/2)=\cos(\theta	)}	is	not	dimensionally	inconsistent	since	it	is	a	special	case	of	the	sum	of	angles	formula	and	should	properly	be	written:	sin	⁡	(	a	1	z	+	b	1	z	)	=	sin	⁡	(	a	1	z	)	cos	⁡	(	b	1	z	)	+	sin	⁡	(	b	1	z	)	cos	⁡	(	a	1	z	)	,	{\displaystyle	\sin
\left(a\,1_{\text{z}}+b\,1_{\text{z}}\right)=\sin	\left(a\,1_{\text{z}})\cos(b\,1_{\text{z}}\right)+\sin	\left(b\,1_{\text{z}})\cos(a\,1_{\text{z}}\right),}	which	for	a	=	θ	{\displaystyle	a=\theta	}	and	b	=	π	/	2	{\displaystyle	b=\pi	/2}	yields	sin	⁡	(	θ	1	z	+	[	π	/	2	]	1	z	)	=	1	z	cos	⁡	(	θ	1	z	)	{\displaystyle	\sin(\theta	\,1_{\text{z}}+[\pi
/2]\,1_{\text{z}})=1_{\text{z}}\cos(\theta	\,1_{\text{z}})}	.	Siano	distinguishes	between	geometric	angles,	which	have	an	orientation	in	3-dimensional	space,	and	phase	angles	associated	with	time-based	oscillations,	which	have	no	spatial	orientation,	i.e.	the	orientation	of	a	phase	angle	is	1	0	{\displaystyle	1_{0}}	.	The	assignment	of	orientational
symbols	to	physical	quantities	and	the	requirement	that	physical	equations	be	orientationally	homogeneous	can	actually	be	used	in	a	way	that	is	similar	to	dimensional	analysis	to	derive	a	little	more	information	about	acceptable	solutions	of	physical	problems.	In	this	approach	one	sets	up	the	dimensional	equation	and	solves	it	as	far	as	one	can.	If	the
lowest	power	of	a	physical	variable	is	fractional,	both	sides	of	the	solution	is	raised	to	a	power	such	that	all	powers	are	integral.	This	puts	it	into	"normal	form".	The	orientational	equation	is	then	solved	to	give	a	more	restrictive	condition	on	the	unknown	powers	of	the	orientational	symbols,	arriving	at	a	solution	that	is	more	complete	than	the	one	that
dimensional	analysis	alone	gives.	Often	the	added	information	is	that	one	of	the	powers	of	a	certain	variable	is	even	or	odd.	As	an	example,	for	the	projectile	problem,	using	orientational	symbols,	θ,	being	in	the	xy-plane	will	thus	have	dimension	1z	and	the	range	of	the	projectile	R	will	be	of	the	form:	R	=	g	a	v	b	θ	c		which	means		L	1	x	∼	(	L	1	y	T	2	)	a
(	L	T	)	b	1	z	c	.	{\displaystyle	R=g^{a}\,v^{b}\,\theta	^{c}{\text{	which	means	}}{\mathsf	{L}}\,1_{\mathrm	{x}	}\sim	\left({\frac	{{\mathsf	{L}}\,1_{\text{y}}}{{\mathsf	{T}}^{2}}}\right)^{a}\left({\frac	{\mathsf	{L}}{\mathsf	{T}}}\right)^{b}\,1_{\mathsf	{z}}^{c}.\,}	Dimensional	homogeneity	will	now	correctly	yield	a	=	−1	and	b	=	2,	and
orientational	homogeneity	requires	that	1	x	/	(	1	y	a	1	z	c	)	=	1	z	c	+	1	=	1	{\displaystyle	1_{x}/(1_{y}^{a}1_{z}^{c})=1_{z}^{c+1}=1}	.	In	other	words,	that	c	must	be	an	odd	integer.	In	fact	the	required	function	of	theta	will	be	sin(θ)cos(θ)	which	is	a	series	consisting	of	odd	powers	of	θ.	It	is	seen	that	the	Taylor	series	of	sin(θ)	and	cos(θ)	are
orientationally	homogeneous	using	the	above	multiplication	table,	while	expressions	like	cos(θ)	+	sin(θ)	and	exp(θ)	are	not,	and	are	(correctly)	deemed	unphysical.	Siano's	orientational	analysis	is	compatible	with	the	conventional	conception	of	angular	quantities	as	being	dimensionless,	and	within	orientational	analysis,	the	radian	may	still	be
considered	a	dimensionless	unit.	The	orientational	analysis	of	a	quantity	equation	is	carried	out	separately	from	the	ordinary	dimensional	analysis,	yielding	information	that	supplements	the	dimensional	analysis.	Dimensionless	concepts	Constants	Main	article:	Dimensionless	quantity	The	dimensionless	constants	that	arise	in	the	results	obtained,	such
as	the	C	in	the	Poiseuille's	Law	problem	and	the	κ	{\displaystyle	\kappa	}	in	the	spring	problems	discussed	above,	come	from	a	more	detailed	analysis	of	the	underlying	physics	and	often	arise	from	integrating	some	differential	equation.	Dimensional	analysis	itself	has	little	to	say	about	these	constants,	but	it	is	useful	to	know	that	they	very	often	have
a	magnitude	of	order	unity.	This	observation	can	allow	one	to	sometimes	make	"back	of	the	envelope"	calculations	about	the	phenomenon	of	interest,	and	therefore	be	able	to	more	efficiently	design	experiments	to	measure	it,	or	to	judge	whether	it	is	important,	etc.	Formalisms	Paradoxically,	dimensional	analysis	can	be	a	useful	tool	even	if	all	the
parameters	in	the	underlying	theory	are	dimensionless,	e.g.,	lattice	models	such	as	the	Ising	model	can	be	used	to	study	phase	transitions	and	critical	phenomena.	Such	models	can	be	formulated	in	a	purely	dimensionless	way.	As	we	approach	the	critical	point	closer	and	closer,	the	distance	over	which	the	variables	in	the	lattice	model	are	correlated
(the	so-called	correlation	length,	ξ	{\displaystyle	\xi	}	)	becomes	larger	and	larger.	Now,	the	correlation	length	is	the	relevant	length	scale	related	to	critical	phenomena,	so	one	can,	e.g.,	surmise	on	"dimensional	grounds"	that	the	non-analytical	part	of	the	free	energy	per	lattice	site	should	be	∼	1	/	ξ	d	{\displaystyle	\sim	1/\xi	^{d}}	where	d
{\displaystyle	d}	is	the	dimension	of	the	lattice.	It	has	been	argued	by	some	physicists,	e.g.,	M.	J.	Duff,[21][24]	that	the	laws	of	physics	are	inherently	dimensionless.	The	fact	that	we	have	assigned	incompatible	dimensions	to	Length,	Time	and	Mass	is,	according	to	this	point	of	view,	just	a	matter	of	convention,	borne	out	of	the	fact	that	before	the
advent	of	modern	physics,	there	was	no	way	to	relate	mass,	length,	and	time	to	each	other.	The	three	independent	dimensionful	constants:	c,	ħ,	and	G,	in	the	fundamental	equations	of	physics	must	then	be	seen	as	mere	conversion	factors	to	convert	Mass,	Time	and	Length	into	each	other.	Just	as	in	the	case	of	critical	properties	of	lattice	models,	one
can	recover	the	results	of	dimensional	analysis	in	the	appropriate	scaling	limit;	e.g.,	dimensional	analysis	in	mechanics	can	be	derived	by	reinserting	the	constants	ħ,	c,	and	G	(but	we	can	now	consider	them	to	be	dimensionless)	and	demanding	that	a	nonsingular	relation	between	quantities	exists	in	the	limit	c	→	∞	{\displaystyle	c\rightarrow	\infty	}	,
ℏ	→	0	{\displaystyle	\hbar	\rightarrow	0}	and	G	→	0	{\displaystyle	G\rightarrow	0}	.	In	problems	involving	a	gravitational	field	the	latter	limit	should	be	taken	such	that	the	field	stays	finite.	Dimensional	equivalences	Following	are	tables	of	commonly	occurring	expressions	in	physics,	related	to	the	dimensions	of	energy,	momentum,	and	force.[25][26]
[27]	SI	units	Main	article:	SI	units	Energy,	E	T−2L2M	Expression	Nomenclature	Mechanical	F	d	{\displaystyle	Fd}	F	=	force,	d	=	distance	S	/	t	≡	P	t	{\displaystyle	S/t\equiv	Pt}	S	=	action,	t	=	time,	P	=	power	m	v	2	≡	p	v	≡	p	2	/	m	{\displaystyle	mv^{2}\equiv	pv\equiv	p^{2}/m}	m	=	mass,	v	=	velocity,	p	=	momentum	I	ω	2	≡	L	ω	≡	L	2	/	I
{\displaystyle	I\omega	^{2}\equiv	L\omega	\equiv	L^{2}/I}	L	=	angular	momentum,	I	=	moment	of	inertia,	ω	=	angular	velocity	Ideal	gases	p	V	≡	N	T	{\displaystyle	pV\equiv	NT}	p	=	pressure,	Volume,	T	=	temperature	N	=	amount	of	substance	Waves	A	I	t	≡	A	S	t	{\displaystyle	AIt\equiv	ASt}	A	=	area	of	wave	front,	I	=	wave	intensity,	t	=	time,	S	=
Poynting	vector	Electromagnetic	q	ϕ	{\displaystyle	q\phi	}	q	=	electric	charge,	ϕ	=	electric	potential	(for	changes	this	is	voltage)	ε	E	2	V	≡	B	2	V	/	μ	{\displaystyle	\varepsilon	E^{2}V\equiv	B^{2}V/\mu	}	E	=	electric	field,	B	=	magnetic	field,	ε	=	permittivity,	μ	=	permeability,	V	=	3d	volume	p	E	≡	m	B	≡	I	A	B	{\displaystyle	pE\equiv	mB\equiv	IAB}	p
=	electric	dipole	moment,	m	=	magnetic	moment,	A	=	area	(bounded	by	a	current	loop),	I	=	electric	current	in	loop	Momentum,	p	T−1LM	Expression	Nomenclature	Mechanical	m	v	≡	F	t	{\displaystyle	mv\equiv	Ft}	m	=	mass,	v	=	velocity,	F	=	force,	t	=	time	S	/	r	≡	L	/	r	{\displaystyle	S/r\equiv	L/r}	S	=	action,	L	=	angular	momentum,	r	=
displacement	Thermal	m	⟨	v	2	⟩	{\displaystyle	m{\sqrt	{\left\langle	v^{2}\right\rangle	}}}	⟨	v	2	⟩	{\displaystyle	{\sqrt	{\left\langle	v^{2}\right\rangle	}}}	=	root	mean	square	velocity,	m	=	mass	(of	a	molecule)	Waves	ρ	V	v	{\displaystyle	\rho	Vv}	ρ	=	density,	V	=	volume,	v	=	phase	velocity	Electromagnetic	q	A	{\displaystyle	qA}	A	=	magnetic	vector
potential	Force,	F	T−2LM	Expression	Nomenclature	Mechanical	m	a	≡	p	/	t	{\displaystyle	ma\equiv	p/t}	m	=	mass,	a	=	acceleration	Thermal	T	δ	S	/	δ	r	{\displaystyle	T\delta	S/\delta	r}	S	=	entropy,	T	=	temperature,	r	=	displacement	(see	entropic	force)	Electromagnetic	E	q	≡	B	q	v	{\displaystyle	Eq\equiv	Bqv}	E	=	electric	field,	B	=	magnetic	field,	v
=	velocity,	q	=	charge	Natural	units	Main	article:	Natural	units	If	c	=	ħ	=	1,	where	c	is	the	speed	of	light	and	ħ	is	the	reduced	Planck	constant,	and	a	suitable	fixed	unit	of	energy	is	chosen,	then	all	quantities	of	time	T,	length	L	and	mass	M	can	be	expressed	(dimensionally)	as	a	power	of	energy	E,	because	length,	mass	and	time	can	be	expressed	using
speed	v,	action	S,	and	energy	E:[27]	t	=	S	E	,	L	=	S	v	E	,	M	=	E	v	2	{\displaystyle	t={\frac	{S}{E}},\quad	L={\frac	{Sv}{E}},\quad	M={\frac	{E}{v^{2}}}}	though	speed	and	action	are	dimensionless	(v	=	c	=	1	and	S	=	ħ	=	1)	–	so	the	only	remaining	quantity	with	dimension	is	energy.	In	terms	of	powers	of	dimensions:	E	n	=	T	p	L	q	M	r	=	E	−	p	−	q
+	r	{\displaystyle	{\mathsf	{E}}^{n}={\mathsf	{T}}^{p}{\mathsf	{L}}^{q}{\mathsf	{M}}^{r}={\mathsf	{E}}^{-p-q+r}}	This	is	particularly	useful	in	particle	physics	and	high	energy	physics,	in	which	case	the	energy	unit	is	the	electron	volt	(eV).	Dimensional	checks	and	estimates	become	very	simple	in	this	system.	However,	if	electric	charges
and	currents	are	involved,	another	unit	to	be	fixed	is	for	electric	charge,	normally	the	electron	charge	e	though	other	choices	are	possible.	Quantity	p,	q,	r	powers	of	energy	npower	of	energy	p	q	r	n	Action,	S	−1	2	1	0	Speed,	v	−1	1	0	0	Mass,	M	0	0	1	1	Length,	L	0	1	0	−1	Time,	t	1	0	0	−1	Momentum,	p	−1	1	1	1	Energy,	E	−2	2	1	1	See	also
Buckingham	π	theorem	Dimensionless	numbers	in	fluid	mechanics	Fermi	estimate	—	used	to	teach	dimensional	analysis	Numerical-value	equation	Rayleigh's	method	of	dimensional	analysis	Similitude	(model)	—	an	application	of	dimensional	analysis	System	of	measurement	Related	areas	of	mathematics	Covariance	and	contravariance	of	vectors
Exterior	algebra	Geometric	algebra	Quantity	calculus	Programming	languages	Dimensional	correctness	as	part	of	type	checking	has	been	studied	since	1977.[28]	Implementations	for	Ada[29]	and	C++[30]	were	described	in	1985	and	1988.	Kennedy's	1996	thesis	describes	an	implementation	in	Standard	ML,[31]	and	later	in	F#.[32]	There	are
implementations	for	Haskell,[33]	OCaml,[34]	and	Rust,[35]	Python,[36]	and	a	code	checker	for	Fortran.[37][38]	Griffioen's	2019	thesis	extended	Kennedy's	Hindley–Milner	type	system	to	support	Hart's	matrices.[39][40]	McBride	and	Nordvall-Forsberg	show	how	to	use	dependent	types	to	extend	type	systems	for	units	of	measure.[41]	Notes	^
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